Limits of spiked random matrices I

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust spiked random matrices and a robust G-MUSIC estimator

A class of robust estimators of scatter applied to information-plus-impulsive noise samples is studied, where the sample information matrix is assumed of low rank; this generalizes the study (Couillet et al., 2013b) to spiked random matrix models. It is precisely shown that, as opposed to sample covariance matrices which may have asymptotically unbounded (eigen-)spectrum due to the sample impul...

متن کامل

Random words, quantum statistics, central limits, random matrices

Recently Tracy and Widom conjectured [25] and Johansson proved [13] that the expected shape λ of the semi-standard tableau produced by a random word in k letters is asymptotically the spectrum of a random traceless k × k GUE matrix. In this article we give two arguments for this fact. In the first argument, we realize the random matrix itself as a quantum random variable on the space of random ...

متن کامل

Statistical limits of spiked tensor models

We study the statistical limits of both detecting and estimating a rank-one deformation of a symmetric random Gaussian tensor. We establish upper and lower bounds on the critical signal-to-noise ratio, under a variety of priors for the planted vector: (i) a uniformly sampled unit vector, (ii) i.i.d. ±1 entries, and (iii) a sparse vector where a constant fraction ρ of entries are i.i.d. ±1 and t...

متن کامل

Continuum limits of random matrices and the Brownian carousel

We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sineβ , a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limi...

متن کامل

Optimality and Sub-optimality of PCA for Spiked Random Matrices and Synchronization

A central problem of random matrix theory is to understand the eigenvalues of ‘spiked’ or ‘deformed’ random matrix models, in which a prominent eigenvector (or ‘spike’) is planted into a random matrix. These distributions form natural statistical models for principal component analysis (PCA) problems throughout the sciences. Baik, Ben Arous, and Péché [2005] showed that the spiked Wishart ensem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2012

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-012-0443-2